
www.manaraa.com

Ventral striatal dopamine reflects behavioral and
neural signatures of model-based control during
sequential decision making
Lorenz Desernoa,b,c,1, Quentin J. M. Huysd,e, Rebecca Boehmec, Ralph Buchertf, Hans-Jochen Heinzea,b,g,
Anthony A. Graceh,i,j, Raymond J. Dolank,l, Andreas Heinzc,m, and Florian Schlagenhaufa,c

aMax Planck Fellow Group “Cognitive and Affective Control of Behavioral Adaptation”, Max Planck Institute for Human Cognitive and Brain Sciences, 04130
Leipzig, Germany; bDepartment of Neurology, Otto von Guericke University, 39118 Magdeburg, Germany; cDepartment of Psychiatry and Psychotherapy,
Campus Charité Mitte, Charité–Universitätsmedizin Berlin, 10115 Berlin, Germany; dTranslational Neuromodeling Unit, Institute for Biomedical Engineering,
University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, 8032 Zurich, Switzerland; eDepartment of Psychiatry, Psychotherapy and
Psychosomatics, Hospital of Psychiatry, University of Zurich, 8032 Zurich, Switzerland; fDepartment of Nuclear Medicine, Charité–Universitätsmedizin Berlin,
10115 Berlin, Germany; gLeibniz Institute for Neurobiology, Otto von Guericke University, 39118 Magdeburg, Germany; Departments of hNeuroscience,
iPsychiatry and jPsychology, University of Pittsburgh, Pittsburgh, PA 15260; kWellcome Trust Centre for Neuroimaging, University College London, London
WC1N 3BG, United Kingdom; lHumboldt Universität zu Berlin, Berlin School of Mind and Brain, 10115 Berlin, Germany; and mCluster of Excellence NeuroCure,
Charité–Universitätsmedizin Berlin, 10115 Berlin, Germany

Edited by Ranulfo Romo, Universidad Nacional Autonóma de México, Mexico City, D.F., Mexico, and approved December 23, 2014 (received for review
September 11, 2014)

Dual system theories suggest that behavioral control is parsed be-
tween a deliberative “model-based” and a more reflexive “model-
free” system. A balance of control exerted by these systems is
thought to be related to dopamine neurotransmission. However,
in the absence of direct measures of human dopamine, it remains
unknown whether this reflects a quantitative relation with dopa-
mine either in the striatum or other brain areas. Using a sequential
decision task performed during functional magnetic resonance
imaging, combined with striatal measures of dopamine using
[18F]DOPA positron emission tomography, we show that higher
presynaptic ventral striatal dopamine levels were associated with
a behavioral bias toward more model-based control. Higher pre-
synaptic dopamine in ventral striatum was associated with greater
coding of model-based signatures in lateral prefrontal cortex and di-
minished coding of model-free prediction errors in ventral striatum.
Thus, interindividual variability in ventral striatal presynaptic dopa-
mine reflects a balance in the behavioral expression and the neural
signatures of model-free and model-based control. Our data provide
a novel perspective on how alterations in presynaptic dopamine
levels might be accompanied by a disruption of behavioral control
as observed in aging or neuropsychiatric diseases such as schizo-
phrenia and addiction.
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Human choice behavior is influenced by both habitual and
goal-directed systems (1). For example, having enjoyed a

delicious dinner makes another subsequent visit to the same
restaurant more likely. Upon returning at a later point, another
visit could happen reflexively when walking past the restaurant,
or alternatively be planned and involve reflection, for instance,
by checking recent customer reviews to bolster against possible
changes. These two decision modes differ fundamentally in
terms of their control over actions and associated outcome
consequences. Reflexive habitual preferences are retrospective
and arise from a slow accumulation of rewards via iterative
updating of expectations (2), for example by repeating dinner
at the same place after having previously enjoyed tasty food
there. In contrast, goal-directed behavior requires a prospec-
tive consideration of future outcomes associated with a set of
actions (3). For example, knowledge that the chef has changed
and subsequent reviews have been less good should reduce
one’s expectations. Thus, in the face of such change, a goal-
directed system can adapt quickly, whereas a habitual system
needs to experience an actual outcome before it can alter be-
havior in an adaptive manner (4). This dual-system theory has been

formalized within computational models of learning that update
expectations based on past rewards (“model-free”) or map possible
actions to their potential outcomes (“model-based”) (5). There is
evidence that model-based learning signals during the acquisition
of task structure are encoded within prefrontal–parietal cortices,
whereas model-free learning signals are encoded in ventral stria-
tum (6). In the sequential decision task used here, a neural
dissociation between the two systems has been less easy to de-
fine, with prefrontal cortex (PFC) and ventral striatum coding
both model-free learning signals and additional model-based
signatures (7).
An unresolved question centers on what factors relate to the

degree to which an individual’s choices reflect the dominance of
either model-free or model-based systems of control. Among
neuromodulators, dopamine has repeatedly been linked to this
balance (1, 8–12), although it is important to acknowledge that
other neuromodulatory agents are likely to also play a role (13).
Traditionally, dopamine is associated with model-free learning,
representing a teaching signal used to update expectations,
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for example via a temporal difference reward prediction error
(14, 15). Potential correlates of this dopamine learning signal
have been reported in functional magnetic resonance imaging
(fMRI) studies in humans (e.g., ref. 16). On the other hand,
individual variation of striatal presynaptic dopamine, quantified
using neurochemical imaging, is known to positively relate to
variability in “prefrontal” cognitive capacities (17, 18), which
might also limit the capacity for model-based learning (19). In-
deed, depletion of presynaptic dopamine precursors and
Parkinson’s disease both compromised goal-directed behavior
in a devaluation experiment and a slips-of-action test, whereas
habitual learning remained intact (20, 21). Furthermore, a phar-
macological challenge with L-DOPA, a manipulation known to
boost overall brain dopamine levels, has been shown to enhance
model-based over model-free choices in a sequential decision-
making task (12). These studies raise the possibility that a balance
between model-free and model-based control is intimately related
to variations in dopamine levels but they are agnostic as to the
likely locus of this influence.
A radiolabeled variant of L-DOPA, [18F]DOPA, allows

quantification of individual levels of presynaptic dopamine in vivo
by using positron emission tomography (PET) (22). Schlagenhauf
et al. (23) used this methodology to show an inverse relationship
between ventral striatal presynaptic dopamine levels and an fMRI
signal that indexed ventral striatal model-free learning signals.
Ventral striatal presynaptic dopamine levels are a candidate marker
for a balance between model-free and model-based control in light
of evidence that ventral striatal lesions impair model-based
learning (24), whereas ventral striatal activation encodes a signa-
ture of both model-free and model-based learning (7). Further-
more, as mentioned above, presynaptic dopamine levels in ventral
striatum were negatively correlated with ventral striatal model-
free learning signals (23).
Here, we combine a two-step sequential decision task during

fMRI with [18F]DOPA PET to quantify interindividual differ-
ences in striatal presynaptic dopamine levels. Our hypothesis was
that interindividual variation in presynaptic levels of striatal
dopamine relate to behavioral and neural signatures of model-
based and model-free control.

Results
Model-Free Versus Model-Based Control.A balance between model-
free and model-based choice behavior was assessed using a two-
step decision task in 29 healthy participants (Fig. 1 A and B). In

this task, subjects make two sequential choices between stimulus
pairs to receive a monetary reward. At the first stage, each choice
option led commonly (70% probability) to one of two pairs of
stimuli and rarely (30% probability) to the other pair. After
entering the second stage, a second choice was followed by
monetary reward or zero outcome, delivered according to slowly
changing Gaussian random walks to facilitate continuous
updating of action values. A purely model-based learner exploits
probabilities in the transition structure from the first to the
second stage, whereas a purely model-free learner neglects this
task structure. It has been shown that behavior shows influences
of both systems (7) (Fig. S1) and at an individual level a balance
between model-free and model-based control can be quantified
by a hybrid model. This hybrid model combines the decision
values of two algorithms according to a weighting factor ω. One
algorithm involves model-free temporal difference learning,
whereas the other performs a model-based tree search by using
explicitly instructed transition probabilities to prospectively up-
date first-stage decision values (SI Text). A higher weighting pa-
rameter ω indicates a bias toward model-based choices and is our
primary measure of interest. The models were implemented as in
the original paper (7), and in line with previous studies (7, 12),
a hybrid model again best explained choice behavior as shown in
a Bayesian model selection procedure (exceedance probability =
0.98; Table S1; ref. 25).

Striatal Dopamine and a Balance of Behavioral Control. To test
whether striatal presynaptic dopamine levels relate to a balance
between model-free and model-based choice behavior, we used
the weighting parameter ω derived from computational model-
ing (Table S2) as dependent variable in a linear regression
analysis with a quantitative metric of F-DOPA uptake (Ki) from
right and left ventral and remaining striatum as independent
variables (Fig. 1C). This revealed a significant positive relation
between Ki in right ventral striatum and the parameter ω (ventral
striatum—right: β = 0.43, t = 2.16, P = 0.04; left: β = 0.10, t =
0.40, P = 0.70; remaining striatum—right: β = 0.10, t = 0.34, P =
0.73; left: β = −0.46, t = 1.48, P = 0.15; Fig. 1D). We repeated
this linear regression analysis with presynaptic dopamine from
ventral striatum, caudate, and putamen for each hemisphere. As
in the initial regression analysis, this revealed that right ventral
striatal presynaptic dopamine alone related to the weighting
parameter ω (ventral striatum—right: β = 0.46, t = 2.22, P =
0.04; left: β = 0.07, t = 0.33, P = 0.74; caudate—right: β = −0.04,
t = 0.14, P = 0.89; left: β = −0.03, t = 0.10, P = 0.92; putamen—
right: β = 0.09, t = 0.33, P = 0.74; left: β = −0.46, t = 1.68, P =
0.11). This positive relationship was also consistent with findings
from an analysis of stay–switch behavior at the first stage as
a function of right ventral striatal presynaptic dopamine (SI Text,
Fig. S2). In line with our hypothesis, ventral striatal presynaptic
dopamine levels were associated with a behavioral bias toward
model-based choices.
Our finding of a positive relation between ventral striatal pre-

synaptic dopamine and model-based control indicates that a model-
based system is more engaged as a function of higher ventral striatal
presynaptic dopamine. This relationship can also be probed via an
analysis of second-stage reaction times. In our task, a model-based
learner uses knowledge about state transitions and second-stage
reaction time differences between common versus rare states should
reflect the level of involvement in model-based control. When
comparing common and rare states, we found that second-stage
reaction times differed significantly (paired t test: mean difference,
218 ± 165 ms SD; t = 7.10; P < 0.001; Fig. S3). Note that model-free
learning cannot account for this effect because it neglects the state
transition matrix. Reaction times were significantly slower in rare
compared with common states and individual variability in this re-
action time difference (most likely slowing down in rare states; Fig.
S3) positively related to the parameter ω (r = 0.59, P = 0.001; Fig.
S4), where the latter was inferred independently of reaction times
using computational modeling. Crucially, a positive relation be-
tween the second-stage reaction time difference for rare versus
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Fig. 1. Behavioral task and relation to presynaptic dopamine. (A) Exemplary trial
sequence of the two-step decision task and timing. (B) Illustration of the state tran-
sition matrix. (C) Mean voxelwise Ki map of 29 participants and borders of striatal
regionsof interest. (D)CorrelationbetweenrightventralstriatalKiandthebalanceof
model-free andmodel-based choicesω (r=0.31;P=0.04) andbetween right ventral
striatal Ki and the reaction times for common versus rare states (r = 0.38; P = 0.04).
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common states was linked to right ventral striatal presynaptic do-
pamine (linear regression analysis: ventral striatum—right: β = 0.47,
t = 2.33, P = 0.03; left: β = 0.03, t = 0.14, P = 0.89; remaining
striatum—right: β = 0.07, t = 0.22, P = 0.83; left: β = −0.32, t =
−1.02, P = 0.32; Fig. 1D). The latter relationship was specific for the
second-stage reaction time difference comparing common with rare
states, whereas no relationship was evident between presynaptic
dopamine levels in ventral striatum and overall reaction times at the
second stage of the task (Fig. S4). This analysis further supports the
idea that higher levels of ventral striatal presynaptic dopamine re-
late to more pronounced model-based control in rare task states,
where the computational cost of model-based inference is expected
to result in slower reaction times.

Neural Signatures of Model-Free and Model-Based Choices. We first
replicated the results reported by Daw et al. (7), who showed
that ventral striatal blood oxygen level-dependent (BOLD) sig-
nals reflect model-free as well as model-based components.
Following the same analytic strategy, we first sought to identify
brain regions where BOLD responses covaried with model-free
prediction errors. We then asked whether these BOLD signals
might also incrementally reflect model-based components, by
including the difference between model-based and model-free
prediction errors as an additional regressor (for details, see Ex-
perimental Procedures). Positive correlations with model-free
prediction errors were observed in a prefrontal-striatal network,
including sectors of lateral and medial PFC bilaterally as well as
bilateral ventral striatum [P < 0.05, familywise error (FWE)-
corrected at the peak level for the whole brain; Fig. 2 and Table
S3]. The effect of additional model-based components reached
significance in the same regions, namely bilateral ventral stria-
tum, right lateral PFC, and medial PFC (P < 0.05, FWE-corrected
at the peak level for the respective bilateral regions of interest; Fig.
2 and Table S3). The conjunction of model-free and model-based
effects reached significance in right lateral PFC and bilateral ventral
striatum (P < 0.05, FWE-corrected at the peak level for the re-
spective bilateral regions of interest; Fig. 2).

Ventral Striatal Dopamine and Ventral Striatal Model-Free Learning
Signals. In previous work (23), we presented evidence for a neg-
ative relationship between right ventral striatal presynaptic do-
pamine levels and model-free prediction errors in right ventral
striatum. To replicate this finding, we extracted parameter esti-
mates of model-free prediction errors in right ventral striatum at
peak coordinates [x = 16, y = 8, z = −8] from the conjunction
contrast within an 8-mm sphere. In an analysis restricted to right
ventral striatum based on previous work (23), we again found
a negative relationship between ventral striatal coding of

model-free prediction errors and ventral striatal presynaptic
dopamine levels (r = −0.37; P < 0.05; Fig. 3A). This correlation
also remained significant when controlling for presynaptic do-
pamine levels from other striatal regions (SI Text) and when
perfoming a voxelwise analysis (SI Text, Fig. S5).

Ventral Striatal Dopamine and Neural Model-Based Signatures.Here,
we asked whether right ventral striatal presynaptic dopamine
levels related to encoding of model-based information. We
extracted parameter estimates of the model-based difference
regressor for lateral PFC [x = 42, y = 24, z = −14] and ventral
striatum [x = 16, y = 8, z = −8] at peak coordinates of the
conjunction contrast (surrounded by 8-mm spheres), which were
then subjected to an ANOVA with the factor “region” and right
ventral striatal Ki as a covariate. We found a significant region by
Ki interaction (F = 5.10; P < 0.05), driven by a significant positive
relation between ventral striatal Ki with model-based signatures
in lateral PFC (r = 0.39; P < 0.05; Fig. 3B) but not in ventral
striatum (r = −0.07; P > 0.7). This correlation also remained
significant when controlling for presynaptic dopamine levels
from other striatal regions (SI Text) and when perfoming a vox-
elwise analysis (SI Text, Fig. S5). Note that the sensitivity of the
PET technique does not allow accurate measures of cortical
levels of presynaptic dopamine.

Discussion
Here, we demonstrate that ventral striatal presynaptic dopamine
reflects a balance in the behavioral and neural signatures of model-
free and model-based control in a two-stage sequential decision-
making task. Higher levels of presynaptic dopamine in right ventral
striatum were positively related to a greater disposition to make
model-based choices. Crucially, higher levels of presynaptic dopa-
mine in right ventral striatum were also associated with stronger
model-based coding in lateral PFC and diminished coding of
model-free prediction errors in ventral striatum.

Ventral Striatal Dopamine and a Model-Based System. It has been
shown previously, using an identical task to the one used here,
that administration of L-DOPA increases model-based over
model-free choices (12). Using PET, we now demonstrate that
interindividual differences in ventral striatal presynaptic dopa-
mine levels are related to this bias toward model-based control.
This accords with other studies that report enhanced cognitive
capacities in subjects with higher levels of striatal F-DOPA up-
take (17, 18). Cognitive capacity, particularly as it relates to
working memory function, is also linked to the extent to which
individuals exploit model-based control (19). Conceptually, this
pattern of results can be explained in a framework of un-
certainty-based competition between the two decision systems
(5). Thus, participants with higher levels of presynaptic dopa-
mine can be thought of as encoding model-based estimates with
higher certainty. At a neural level, we demonstrate that ventral
striatal presynaptic dopamine levels relate positively to coding of
model-based signatures in lateral PFC and are accompanied by
a bias toward more model-based choices. It is conceivable that
higher levels of presynaptic dopamine enable lateral PFC to code
cognitively demanding model-based information with greater

VS

IPFC

Model-free Model-based Conjunction

0 2 4 6 8 10 0 1 2 3 4 5

Fig. 2. fMRI results. Model-free prediction errors (Left), additional model-
based signals (Middle), and the conjunction of both (Right) in ventral striatum
(VS,Upper) and lateral prefrontal cortex (lPFC, Lower). For display purposes, all
statistical maps are thresholded at a minimum T value of 3.24 (corresponding
to P < 0.001, uncorrected) with a cluster extent k = 20. For details, see Table S3.
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Fig. 3. Presynaptic dopamine and neural learning signatures. Correlation
between right ventral striatal presynaptic dopamine Ki and (A) model-free
learning signals in right ventral striatum (r = −0.37; P = 0.02) and (B) model-
based signatures in right lateral prefrontal cortex (r = 0.38; P = 0.03).
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precision, thereby increasing certainty in model-based estimates.
As a consequence, a model-based system may exert a greater
influence on behavioral control. In a similar vein, dopamine is
implicated in a modulation of PFC maintenance processes via
a gating of cortical gain, rendering coding of relevant environ-
mental information more robust against noise (11, 26, 27).
Indeed, the importance of lateral PFC for model-based inference
is supported by findings that theta-burst transcranial magnetic
stimulation compromises model-based control in humans (28).
Our analysis of second-stage reaction times, which were af-

fected by the state transition matrix, showed that a response time
difference for rare versus common states was positively related to
a bias toward more model-based choices. Intriguingly, this re-
action time difference for rare versus common states positively
correlated with ventral striatal presynaptic dopamine. These
results are consistent with an engagement of a slower, computa-
tionally more costly model-based system (1, 3). Engagement of
a model-based system is more likely after rare transitions as these
trials are associated with increased uncertainty in representing
an anticipated sequence of actions and outcomes. Furthermore,
ventral striatal tonic dopamine is implicated in signaling average
reward rates (29), a theoretical proposal that has received recent
empirical support (e.g., ref. 30). Nevertheless, in the context of
the task used here, ventral striatal presynaptic dopamine levels
were not related to invigoration per se as represented by overall
reaction times. In participants who used a more model-based
strategy, one possible explanation is that faster reaction times in
common versus rare states reflect higher expectation of average
reward rates, resulting in greater invigoration for a specific ac-
tion–outcome sequence. However, the role of expected average
reward rates, invigoration, and model-based learning requires
experimental designs tailored to address this question.

Ventral Striatal Dopamine and a Model-Free System. High levels of
ventral striatal presynaptic dopamine can also influence a model-
free system as suggested by the inverse correlation with ventral
striatal model-free prediction errors, a replication of previous
findings (23). This indicates that participants with high levels of
ventral striatal presynaptic dopamine show a bias toward a more
pronounced model-based form of control and are also charac-
terized by a diminished coding of ventral striatal model-free pre-
diction errors. The hypothesis of uncertainty-based competition
(5) might also account for this finding under a premise that higher
presynaptic dopamine levels result in larger phasic prediction er-
ror dopamine transients. In the reinforcement learning account,
this corresponds to an increase in a learning rate within a model-
free system. With high model-free learning rates, model-free val-
ues change more quickly. Thus, over the course of learning, value
changes are more pronounced for single events and a value esti-
mate at a given point in time represents an average across fewer
experiences. This could in turn result in greater uncertainty of
model-free estimates. Such uncertainty would reduce the weight
attached to predictions by a model-free system.
There is substantial evidence that high levels of presynaptic

dopamine exert a detrimental effect on NoGo-learning from
negative prediction errors and promote Go-learning from posi-
tive prediction errors (31). Interestingly, in a previous study (12)
as well as in our data, an alternative model with separate
learning rates for positive and negative updating provided an
inferior fit to the observed choices during the sequential decision
task (SI Text) and failed to account for the observed enhancing
effect of L-DOPA on model-based behavior in the previous
study (12). However, we had only Go-trials and future studies
with paradigms designed to disentangle a potential role of Go-
and NoGo-learning and learning from positive and negative
prediction errors in model-free and model-based control
are required.

Ventral Striatal Dopamine and a Balance of the Two Systems.Ventral
striatal presynaptic dopamine may exert its influence on a bal-
ance between the two systems by directly affecting an arbitrator

that chooses between the two. Here, it is important to note that
model-based signals modulated by ventral striatal presynaptic
dopamine levels were located to the inferior part of the lateral
PFC. Activation at close coordinates has recently been reported
to covary with the reliability of estimates arising from the two
decision systems as inferred from a hierarchical computational
model (32). The latter finding links the inferior section of lateral
PFC to an arbitration process. We note that the study by Lee
et al. (32) extends the idea of uncertainty-based competition by
identifying two PFC regions, the inferior lateral PFC and the
frontopolar cortex, involved in the arbitration of the two systems
by weighting the reliability of the predictions from each system.
With respect to the present study, this also underlines the im-
portance of the association of model-based signatures in inferior
lateral PFC with ventral striatal presynaptic dopamine levels
hinting at the possibility that these dopamine levels may be di-
rectly involved in the arbitration process. State prediction errors
for implicit transition learning were expressed in parietal and
dorsolateral PFC (6, 32). Future studies should study locally
distinct learning signals in lateral PFC (32) and their hierar-
chical organization as suggested by models of lateral PFC
function (33, 34).

Mechanistic Considerations. With regard to mechanisms, it is im-
portant to take into account the intricacies of dopamine neuro-
transmission. In animal research, learning new reward con-
tingencies is causally linked to time-locked, phasic activation of
dopamine neurons (35). We acknowledge that neither fMRI
learning signals nor F-DOPA update kinetics can match the
dynamical properties of these directly recorded signals. How-
ever, phasic dopamine release in ventral striatum selectively
facilitates context-dependent inputs to ventral striatal neurons
via activation of D1 receptors (36). This ventral striatal activation
removes inhibition of midbrain dopamine neurons resulting in an
increase in firing of dopamine neurons leading to an enhanced
tonic dopamine influence on ventral striatum (36), potentially
indexed by activity of dopa decarboxylase. Thus, larger phasic
dopamine transients, which happen in response to unexpected
events, may reduce the weight attached to a model-free system
and allow model-based inputs to dominate. This could in turn be
reflected in overall higher presynaptic dopaminergic activity.
Such changes have been demonstrated in animal research (36),
and it is conceivable that a long-term dominance of such activity
might be reflected in higher presynaptic dopamine levels, as
assessed here via F-DOPA PET. Although speculative, this no-
tion is supported by evidence for reliability of F-DOPA uptake
quantifications in healthy individuals over a period of 1 y (37).
Thus, relatively higher presynaptic dopamine levels could pref-
erentially facilitate signals, which are thought to carry important,
context-dependent, model-based information (36). A possible
neural architecture for these signals includes the hippocampus
and prefrontal cortex (38). In the present study, we did not ob-
serve model-based signatures in the hippocampus, which may well
be due to the applied analytic strategy and the task design (3), but
show that interindividual variability in ventral striatal presynaptic
dopamine levels coincide with a greater coding of model-based
information in lateral PFC. This finding also resonates with the
notion of disrupted presynaptic dopamine function in neurolog-
ical and psychiatric illnesses (e.g., refs. 39 and 40).
Regarding the neural instantiation of both control systems,

animal research has highlighted a dissociation between dorsolat-
eral and dorsomedial striatum, with dorsolateral lesions disrupting
habit formation, whereas dorsomedial lesions impact on goal-
directed control (41, 42). In the present study, we did not observe
a relationship between striatal presynaptic dopamine in either
caudate nucleus (the homolog of dorsomedial striatum) or
putamen (the homolog of dorsolateral striatum) and model-
based fMRI effects (SI Text). This may be due to several factors
including the choice of experimental task, the type of neural
measurement, and also limited homologies between neuroana-
tomical structures in rodents and primates (43, 44). Furthermore,
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evidence indicates these structures may encode model-based and
model-free value signals (45), quantities that were not assessed
here. However, these issues and inconsistencies require clari-
fication in future translational research.

Limitations
The correlative design we deploy precludes any conclusions about
causality. This is important when considering factors that may
determine individual variability in presynaptic dopamine levels in
the healthy population. Here, the orchestration of dopamine and
other neuromodulators at a system level should be taken into
account. For example, serotonin interferes with aversive pro-
cessing (46) and learning from negative prediction errors (47),
whereas cholinergic influences are linked to an encoding of
precision-weighted prediction errors (48). These processes un-
doubtedly contribute to behavioral control and underline a re-
quirement for a more unified view (49). However, the association
between a balance of behavioral control and ventral striatal
presynaptic dopamine levels, as demonstrated in the present
study, supports the idea that ventral striatum is an important
nexus where several inputs converge (50). It remains an open
question as to whether the association between ventral striatal
presynaptic dopamine and a relative dominance of model-based
control in our sequential decision task generalizes to other
instances of goal-directed learning and cognitive control. Fur-
thermore, the interpretation of lateralization with respect to right
ventral presynaptic dopamine measures is challenging, although
this lateralization effect replicates a previous fMRI-PET study
(23). Lateralization effects have been reported in human PET
studies of the dopamine system (e.g., refs. 51 and 52) and also
with respect to the association of these dopamine measurements
with reward and motivation (53, 54). However, results in the
present study were derived from right-handed participants alone,
and all reported correlations remained significant when control-
ling for dopamine measures from right and left striata.

Conclusion
In summary, we show that interindividual differences in human
ventral striatal presynaptic dopamine levels reflect a balance in
behavioral and neural signatures of model-free and model-
based control. Extending pharmacological challenge findings
(12), higher ventral striatal presynaptic dopamine levels were
correlated with a bias toward more model-based control. Higher
presynaptic dopamine levels were associated with stronger coding
of model-based information in lateral PFC and diminished coding
of model-free prediction errors in ventral striatum. The link
between presynaptic dopamine levels and a balance between
model-free and model-based behavioral control has implication for
aging as well as psychiatric diseases such as schizophrenia or
addiction.

Experimental Procedures
Participants. Twenty-nine right-handed participants (11 females) with a mean
age of 28.35 ± 4.95 y (range, 20–39) were included. The research ethics
committee of the Charité Universitätmedizin approved the study, and
written informed consent was obtained from the participants.

Task. A two-step decision task was implemented as in previous studies (7, 12).
The task consisted of a total of 201 trials with two choice stages within each
trial. At each stage, participants had to give a forced choice (maximum de-
cision time, 2 s) between two stimuli presented either on two gray boxes at
the first stage or two pairs of differently colored boxes at the second stage
(Fig. 1). All stimuli were randomly assigned to the left and right position on
the screen. The chosen stimulus was surrounded with a red frame, moved to
the top of the screen after completion of the 2-s decision phase and
remained there for 1.5 s. Subsequently, participants entered the second
stage, and a reward was delivered after a second-stage choice. Reward
probabilities of second-stage stimuli were identical to those of Daw et al. (7).
Each first-stage choice was associated with one pair of the second-stage
stimuli via a fixed transition probability of 70%, which did not change
during the experiment. Trials were separated by an exponentially distrib-
uted intertrial interval with a mean of 2 s. Before the experiment and similar

to Daw et al. (7), participants were explicitly informed that the transition
structure would stay constant throughout the task. Additionally, in-
formation was provided about the independence of reward probabilities
and their dynamic change over the course of the experiment. Participants
were instructed to maximize reward, which they received as monetary
payout after completion of the task. Before entering the scanner,
participants performed a shortened version of the task (55 trials) with dif-
ferent reward probabilities and stimuli.

Computational Modeling. As in previous studies, we fit a hybrid model to the
observed behavioral data (7, 12). This model weights the relative influence of
model-free and model-based choice values, which only differ with respect to
first-stage values. This weighting, the relative influence of both systems on
first-stage values, is expressed via the parameter ω. The special cases of this
model refer to ω = 1 or ω = 0 reflecting purely model-based or purely model-
free control over first-stage values, respectively. For details on the model
itself, fitting, and model selection, see SI Text.

Magnetic Resonance Imaging. Functional imaging was performed using a
3-tesla Siemens Trio scanner to acquire gradient echo T2*-weighted echo-
planar images with BOLD contrast. Covering the whole brain, 40 slices were
acquired in oblique orientation at 20° to the anterior commissure–posterior
commissure line and in interleaved order with 2.5-mm thickness, 3 × 3-mm2

in-plane voxel resolution, 0.5-mm gap between slices, repetition time of
2.09 s, echo time of 22 ms, and a flip angle α of 90°. Before functional scanning,
a field map was collected to account for individual homogeneity differences of
the magnetic field. T1-weighted structural images were also acquired.

Analysis of fMRI Data. fMRI data were analyzed using SPM8 (www.fil.ion.ucl.
ac.uk/spm/software/spm8/). For preprocessing of fMRI data, see SI Text. Be-
fore statistical analysis, data were high-pass filtered with a cutoff of 128 s. An
event-related analysis was applied to the images on two levels using the general
linear model approach as implemented in SPM8. As in the original paper by Daw
et al. (7), the analysis comprised two time points within each trial when
prediction errors arise: at onsets of the second stage and at reward delivery.
Prediction errors at second-stage onsets compare values of first- and second-
stage stimuli and can therefore be varied with respect to the weighting
parameter ω of the hybrid algorithm. Both time points were entered into
the first-level model as one regressor, which was parametrically modulated
by (i) model-free prediction errors and (ii) by the difference between model-
based and model-free prediction errors, which refers to the partial de-
rivative of the value function with respect to ω and reflects the difference
between model-based and model-free values. For details of the first-level
model, see SI Text. Two contrasts of interest, model-free prediction errors
and the difference regressor reflecting additional model-based predictions,
were taken to a second-level random-effects model. For correction of multiple
comparisons, FWE correction was applied using small-volume correction for
bilateral volumes of interest of the ventral striatum (as obtained in the IBASPM
atlas as part of the WFU Pick Atlas), lateral PFC (comprising the middle and
inferior frontal gyrus as part of Automated Anatomic Labeling Atlas), and
medial PFC (comprising the superior medial frontal and medial orbital gyrus as
part of Automated Anatomic Labeling Atlas).

Positron Emission Tomography. Data were acquired using a Philips Gemini
TF16 time-of-flight PET/CT scanner in 3Dmode. After a low-dose transmission
CT scan for attenuation correction, a dynamic 3D “list-mode” emission re-
cording lasting 60 min was started simultaneously with i.v. injection of 200
MBq of F-DOPA as a slow bolus. The emission data were framed into 20
dynamic frames (3 × 20 s, 3 × 1 min, 3 × 2 min, 3 × 3 min, 7 × 5 min, 1 × 6 min)
and reconstructed with an isotropic voxel size of 2 mm.

Analysis of PET Data. PET data were analyzed using SPM8. For preprocessing
of PET data, see SI Text. A quantitative measure of dopamine synthesis ca-
pacity (Ki) was obtained voxel-by-voxel using the Gjedde–Patlak linear graph-
ical analysis with the cerebellum as reference region (55). Frames recorded
between 20 and 60 min of the emission recording were used for linear fit. The
time activity curve of the cerebellum (excluding Vermis) was extracted using
a mask from the WFU Pick Atlas. Mean Ki values were extracted from the
voxelwise maps using the same mask of ventral striatum as for the fMRI
analysis and a corresponding mask of remaining striatal parts taken from the
same atlas (compare Fig. 1).

Combination of PET and Behavioral Data. Right and left Ki from ventral and
remaining striatum were entered as independent variables into a linear
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regression analysis with modeling-derived balance of model-free and model-
based choice behavior ω as dependent variable.

Combination of PET and fMRI Data. The main focus of the present study was to
examine the relationship between presynaptic dopamine and additional model-
based brain signals. Specifically, we aimed to answer the question whether
presynaptic dopamine relates to model-based signatures in ventral striatum or
PFC. Parameter estimateswere extracted at peak coordinates (surroundedwith 8-
mm spheres) of the conjunction ofmodel-free andmodel-based effects. First, and
based on previous work (23), parameter estimates of right ventral striatal model-
free prediction errors were correlated with Ki from right ventral striatum. Sec-
ond, parameter estimates of additional model-based effects in right ventral
striatum and right lateral PFC were entered into a repeated-measures ANOVA
with the factor region. Ki from right ventral striatum was entered as a covariate.

For multimodal imaging analysis, Ki from right ventral striatum was chosen be-
cause it explained individual differences in the weight of model-free and model-
based decisions.
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